INTERNET OF THINGS TECHNOLOGY [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – VIII					
Subject Code15CS81IA Marks20					
Number of Lecture Hours/Week	04	Exam Marks	8	0	
Total Number of Lecture Hours	50	Exam Hours	0	3	
	CREDITS –	04			
Course Objectives: This course will	enable students to				
 Assess the genesis and impact Illustrate diverse methods of Compare different Application Infer the role of Data Analyti Identifysensor technologies for various domains of Industry. 	et of IoT applications deploying smart obj on protocols for IoT. cs and Security in Io for sensing real wor	s, architectures in real ects and connect them oT. Id entities and unders	world. to network. stand the rol	e of IoT in	
				Hours	
What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind New Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack.10 I			10 Hours		
Module – 2					
Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies.				10 Hours	
Module – 3					
IP as the IoT Network Layer, The Business Case for IP, The need for Optimization, Optimizing IP for IoT, Profiles and Compliances, Application Protocols for IoT, The Transport Layer, IoT Application Transport Methods.				10 Hours	
Module – 4					
Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning, Big Data Analytics Tools and Technology, Edge Streaming Analytics, Network Analytics, Securing IoT, A Brief History of OT Security, Common Challenges in OT Security, How IT and OT Security Practices and Systems Vary, Formal Risk Analysis Structures: OCTAVE and FAIR, The Phased Application of Security in an Operational Environment10 Hou				10 Hours	
Module – 5					
Io T Physical Devices and Endpoints - Arduino UNO: Introduction to Arduino, Arduino UNO, Installing the Software, Fundamentals of Arduino Programming. Io T Physical Devices and Endpoints - RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi Board: Hardware Layout, Operating Systems on RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi with Python, Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature Sensor, Connecting RaspberryPi, Smart and Connected Cities, An IoT Strategy for Smarter Cities, Smart City IoT Architecture,				10 Hours	

Smart City Security Architecture, Smart City Use-Case Examples.
Course Outcomes: After studying this course, students will be able to
• Interpret the impact and challenges posed by IoT networks leading to new architectural models.
• Compare and contrast the deployment of smart objects and the technologies to connect them to network.
• Appraise the role of IoT protocols for efficient network communication.
• Elaborate the need for Data Analytics and Security in IoT.
• Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.
Question paper pattern:
The question paper will have ten questions.
There will be 2 questions from each module.
Each question will have questions covering all the topics under a module.
The students will have to answer 5 full questions, selecting one full question from each module.
Text Books:
1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT
Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of
Things", 1 st Edition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-
9386873743)
2. Srinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017
Reference Books:
1. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1 st Edition, VPT, 2014. (ISBN: 978-8173719547)

2. Raj Kamal, **"Internet of Things: Architecture and Design Principles"**, 1st Edition, McGraw Hill Education, 2017. (**ISBN:** 978-9352605224)

BIG	DATA ANALYTI	ICS			
[As per Choice Ba	sed Credit System	(CBCS) scheme]			
(Effective from	n the academic yea	ar 2016 -2017)			
SEMESTER – VIII					
Subject Code	Subject Code15CS82IA Marks20				
Number of Lecture Hours/Week	4	Exam Marks	80		
Total Number of Lecture Hours	50	Exam Hours	03		
	CREDITS – 04				
Course objectives: This course will e	nable students to				
Understand Hadoop Distribute	d File system and e	xamine MapReduce	Programming		
• Explore Hadoop tools and mar	age Hadoop with A	Ambari			
• Appraise the role of Business i	ntelligence and its	applications across in	dustries		
Assess core data mining technic	iques for data analy	tics			
• Identify various Text Mining	techniques				
Module – 1	•		Teaching		
			Hours		
Hadoop Distributed File System E	Basics, Running E	Example Programs	and 10 Hours		
Benchmarks, Hadoop MapReduce Fra	mework, MapRedu	ice Programming			
Module – 2					
Essential Hadoop Tools, Hadoop YA	RN Applications,	Managing Hadoop w	vith 10 Hours		
Apache Ambari, Basic Hadoop Admin	nistration Procedure	es e e e			
Module – 3			•		
Business Intelligence Concepts and	d Application, Da	ata Warehousing, D	Data 10 Hours		
Mining, Data Visualization					
Module – 4					
Decision Trees, Regression, Artificial Neural Networks, Cluster Analysis, 10 Hours					
Association Rule Mining					
Module – 5					
Text Mining, Naïve-Bayes Analysis, Support Vector Machines, Web Mining, 10 Hours					
Social Network Analysis					
Course outcomes: The students should be able to:					
Master the concepts of HDFS and MapReduce framework					
• Investigate Hadoop related tools for Big Data Analytics and perform basic Hadoop					
Administration	-		-		
• Recognize the role of Busines	ss Intelligence, Dat	ta warehousing and V	Visualization in		
decision making					
• Infer the importance of core data mining techniques for data analytics					
Compare and contrast different Text Mining Techniques					
Question paper pattern:					
The question paper will have ten questions.					
There will be 2 questions from each module.					
Each question will have questions covering all the topics under a module.					
The students will have to answer 5 ful	l questions, selectir	ng one full question fi	rom each		
module.					
Text Books:					
1. Douglas Eadline,"Hadoop 2 (Quick-Start Guide	: Learn the Essentia	als of Big Data		
Computing in the Apache H	Hadoop 2 Ecosyste	em", 1 st Edition, Pear	rson Education,		
2016. ISBN-13: 978-9332570351					

2. Anil Maheshwari, **"Data Analytics"**, 1st Edition, McGraw Hill Education, 2017. ISBN-13: 978-9352604180

Reference Books:

- 1) Tom White, **"Hadoop: The Definitive Guide"**, 4th Edition, O'Reilly Media, 2015.ISBN-13: 978-9352130672
- 2) Boris Lublinsky, Kevin T.Smith, Alexey Yakubovich,"**Professional Hadoop Solutions**", 1stEdition, Wrox Press, 2014ISBN-13: 978-8126551071
- 3) Eric Sammer, **''Hadoop Operations: A Guide for Developers and** Administrators'', 1stEdition, O'Reilly Media, 2012.ISBN-13: 978-9350239261

HIGH PER	HIGH PERFORMANCE COMPUTING			
[As per Choice Ba	sed Credit System	(CBCS) scheme]		
(Effective from	the academic yea	r 2016 -2017)		
S.	EMESTER – VIII			
Subject Code15CS831IA Marks20				
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	$\frac{\text{CREDITS} - 03}{1000}$			
Course objectives: This course will e	nable students to			
• Introduce students the design	, analysis, and im	plementation, of high	gh performance	
computational science and eng	ineering application	ns.		
• Illustrate on advanced comput	er architectures, pa	rallel algorithms, par	allel languages,	
and performance-oriented com	puting.			
Module – 1			Teaching	
			Hours	
Introduction: Computational Sci	ence and Engin	eering: Computation	nal 10 Hours	
Science and Engineering Applications	s; characteristics ar	id requirements, Rev	iew	
of Computational Complexity, Pe	erformance: metric	cs and measureme	nts,	
Granularity and Partitioning, Loca	lity: temporal/spat	ial/stream/kernel, Ba		
methods for parallel programming, R	eal-world case stu	dies (drawn from mu	1111-	
scale, multi-discipline applications)				
Module – 2		Malti and Durana	10 TT	
High-End Computer Systems : Ma	emory Hierarchies,	Multi-core Process	ors: 10 Hours	
Homogeneous and Heterogeneous, Shared-memory Symmetric Multiprocessors,			ors,	
Vector Computers, Distributed Memory Computers, Supercomputers and				
Petascale Systems, Application Accelerators / Reconfigurable Computing, Novel			over	
Modulo 3	i puipose-built			
Devallel Algerithms: Devallel mod	tale ideal and r	al framoworks R	ncia 10 Hours	
Techniques: Balanced Trees Pointer	lumping Divide an	d Conquer Partition		
Regular Algorithms: Matrix operation	s and I inear Algeb	ra Irregular Algorith	ms.	
Lists Trees Graphs Randomize	ation: Parallel Ps	eudo-Random Num	her	
Generators Sorting Monte Carlo tech	niques			
Module – 4	inques			
Parallel Programming: Revealing concurrency in applications Task and 10 Hours				
Functional Parallelism Task Sched	uling Synchroniz	ation Methods. Para	llel	
Primitives (collective operations) SPMD Programming (threads OpenMP MPD)			PI).	
I/O and File Systems, Parallel Matlabs (Parallel Matlab Star-P Matlab MPI)				
Partitioning Global Address Space (PGAS) languages (UPC, Titanium, Global				
Arrays)				
Module – 5				
Achieving Performance: Measuring performance, Identifying performance 10 H			nce 10 Hours	
bottlenecks, Restructuring applications for deep memory hierarchies, Partitioning			ing	
applications for heterogeneous resources, using existing libraries, tools, and			and	
frameworks				
Course outcomes: The students should be able to:				
• Illustrate the key factors affecting performance of CSE applications, and				
• Make mapping of applications to high-performance computing systems, and				

• Apply hardware/software co-design for achieving performance on real-world applications

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.
- 2. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman & Hall/CRC Computational Science Series, 2007

Reference Books:

- 1. Grama, A. Gupta, G. Karypis, V. Kumar, An Introduction to Parallel Computing, Design and Analysis of Algorithms: 2/e, Addison-Wesley, 2003.
- 2. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press,2003.
- 3. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2/E, Prentice Hall, 2005.
- 4. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.
- 5. G.S. Almasi and A. Gottlieb, Highly Parallel Computing, 2/E, Addison-Wesley, 1994.
- 6. David Culler Jaswinder Pal Singh,"Parallel Computer Architecture: A hardware/Software Approach", Morgan Kaufmann, 1999.
- 7. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998.

USER	USER INTERFACE DESIGN			
[As per Choice Ba	sed Credit System	n (CBCS) scheme]		
(Effective from	n the academic yea	ar 2016 -2017)		
S	EMESTER – VII	I		
Subject Code	15CS832	IA Marks	20	
Number of Lecture Hours/Week 3 Exam Marks 80				
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03	1		
Course objectives: This course will e	nable students to			
• To study the concept of menus	, windows, interfac	ces		
• To study about business functi	ons			
• To study the characteristics an	d components of w	vindows and the various	controls for	
the windows.	•			
• To study about various problem	ms in windows des	ign with color, text, gr	aphics.	
• To study the testing methods				
Module – 1			Teaching	
			Hours	
Introduction-Importance-Human-Com	nputer interface-ch	aracteristics of graph	ics 10 Hours	
interface-Direct manipulation graphic	cal system - web u	iser interface-populari	ty-	
characteristic & principles.				
Module – 2				
User interface design process- obstacl	es-usability-human	characteristics in desi	gn 10 Hours	
- Human interaction speed-busine	ss functions-requi	rement analysis-Dire	ct-	
Indirect methods-basic business fun	ctions-Design star	ndards-system timings	3 -	
Human consideration in screen des	ign - structures o	f menus - functions	of	
menus-contents of menu-formatting -	phrasing the menu	- selecting menu choi	ce-	
navigating menus-graphical menus.				
Module – 3				
Windows: Characteristics-componen	ts-presentation st	yles-types-managemen	ts- 10 Hours	
organizations-operations-web system	ns-device-based c	ontrols: characteristi	cs-	
Screen -based controls: operate	control - text l	poxes-selection contr	ol-	
combination control-custom control-presentation control.				
Module – 4				
Text for web pages - effect	tive feedback-gu	idance & assistan	ce- 10 Hours	
Internationalization-accessibility -Icon	ns-Image-Multimed	lia-coloring.		
Module – 5				
Windows layout-test :prototypes - ki	nds of tests - retes	st - Information search	h - 10 Hours	
visualization - Hypermedia - www - S	oftware tools.			
Course outcomes: The students should be able to:				
• Design the user interface, design, menu creation and windows creation and				
connection between menu and	windows			
Question paper pattern:				
The question paper will have ten questions.				
There will be 2 questions from each module.				
Each question will have questions covering all the topics under a module.				
The students will have to answer 5 full questions, selecting one full question from each				
module.				
Text Books:				
1. Wilbent. O. Galitz, "The Essential Guide to User Interface Design", John Wiley&				

	Sons, 2001.
Refer	ence Books:
1.	Ben Sheiderman, "Design the User Interface", Pearson Education, 1998.
2.	Alan Cooper, "The Essential of User Interface Design", Wiley - Dream Tech Ltd.,
	2002.

VI	RTUAL REALIT	Y		
[As per Choice Ba	sed Credit System	(CBCS) scheme]		
(Effective from	n the academic yea	ar 2016 -2017)		
S	EMESTER – VIII			
Subject Code	15IS833	IA Marks	20	
Number of Lecture Hours/Week	umber of Lecture Hours/Week3Exam Marks80			
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will e	nable students to			
• Explain understanding of this	technology, underly	ving principles, its pote	ential and	
limits and to learn about the cr	iteria for defining u	seful applications.		
• Illustrate process of creating v	irtual environments			
Module – 1			Teaching	
			Hours	
Introduction : The three I's of virtual	reality, commercia	l VR technology and	the 10 Hours	
five classic components of a VR syste	m.			
Input Devices : (Trackers, Navig	gation, and Gestu	re Interfaces): Thr	ee-	
dimensional position trackers, navi	gation and manip	oulation, interfaces a	ind	
gesture interfaces.				
Text book1: 1.1, 1.3, 1.5, 2.1, 2.2 and	1 2.3			
Module – 2				
Output Devices: Graphics displays, so	ound displays & har	otic feedback.	10 Hours	
Text book1: 3.1.3.2 and 3.3	1 2 1			
Module – 3				
Modeling : Geometric modeling, kinematics modeling, physical modeling, 10 Hours				
behaviour modeling, model managem	ent.	8, r j	8,	
Text book1: 5.1, 5.2 and 5.3, 5.4 and 5.5				
Module – 4				
Human Factors: Methodology and te	Human Factors: Methodology and terminology, user performance studies, VR 10 Hour			
health and safety issues.		,		
Text book1: 7.1, 7.2 and 7.3				
Module – 5				
Applications: Medical applications, military applications, robotics applications, 10 Hour				
Text book1: 8.1, 8.3 and 9.2				
Course outcomes: The students should be able to:				
• Illustrate technology, underlying principles, its potential and limits and to learn about				
the criteria for defining useful applications.				
• Explain process of creating virtual environments				
Question paper pattern:				
The question paper will have ten questions.				
There will be 2 questions from each module.				
Each question will have questions covering all the topics under a module.				
The students will have to answer 5 full questions, selecting one full question from each				
module.	1 /			
Text Books:				
1. Virtual Reality Technology, Second Edition, Gregory C. Burdea & Philippe Coiffet,				
John Wiley & Sons				
Reference Books:				

SYSTEM MOI	SYSTEM MODELLING AND SIMULATION			
[As per Choice Ba	sed Credit System	(CBCS) scheme]		
(Effective from	the academic yea	r 2016 -2017)		
SEMESTER – VIII				
Subject Code	15CS834	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will e	nable students to			
• Explain the basic system conce	ept and definitions of	of system;		
• Discuss techniques to model an	nd to simulate vario	ous systems;		
• Analyze a system and to make	use of the informat	ion to improve the pe	erformance.	
Module – 1		1 1	Teaching	
			Hours	
Introduction: When simulation is	the appropriate to	ool and when it is	not 10 Hours	
appropriate, Advantages and disadvar	ntages of Simulation	on; Areas of applicati	on,	
Systems and system environment;	Components of a	system; Discrete	and	
continuous systems, Model of a system	n; Types of Models	, Discrete-Event Syst	em	
Simulation Simulation examples: S	imulation of que	uing systems. Gene	eral	
Principles, Simulation Software:Co	oncepts in Discrete	-Event Simulation.	Гhe	
Event-Scheduling / Time-Advance A	lgorithm, Manual	simulation Using Ev	rent	
Scheduling				
Module – 2				
Statistical Models in Simulation :Review of terminology and concepts, Useful			eful 10 Hours	
statistical models, Discrete distributions. Continuous distributions, Poisson			son	
process, Empirical distributions.				
Queuing Models: Characteristics of queuing systems, Queuing notation, Long-run			run	
measures of performance of queuing systems,Long-run measures of performance				
of queuing systems cont,Steady-state behavior of M/G/1 queue, Networks of			of	
queues,				
Module – 3				
Random-NumberGeneration:Properties of random numbers; Generation of			of 10 Hours	
pseudo-random numbers, Techniques for generating random numbers, Tests for			for	
Random Numbers, Random-Variate Generation: ,Inverse transform technique				
Acceptance-Rejection technique.				
Module – 4				
Input Modeling: Data Collection; Identifying the distribution with data,			ata, 10 Hours	
Parameter estimation, Goodness of I	Fit Tests, Fitting a	non-stationary Pois	son	
process, Selecting input models without data, Multivariate and Time-Series input			put	
models.				
Estimation of Absolute Performance: Types of simulations with respect to			to	
output analysis ,Stochastic nature of output data, Measures of performance and			and	
their estimation, Contd				
Module – 5				
Measures of performance and their estimation, Output analysis for terminating			ing 10 Hours	
simulations Continued,Output analysis for steady-state simulations.				
Verification, Calibration And Va	lidation: Optimiz	ation: Model buildi	ng,	
verification and validation, Verificat	ion of simulation	models, Verification	of	

simulation models, Calibration and validation of models, Optimization via			
Simulation.			
Course outcomes: The students should be able to:			
 Explain the system concept and apply functional modeling method to model the activities of a static system Describe the behavior of a dynamic system and create an analogous model for a 			
dynamic system;			
• Simulate the operation of a dynamic system and make improvement according to the simulation results.			
Question paper pattern:			
The question paper will have ten questions.			
There will be 2 questions from each module.			
Each question will have questions covering all the topics under a module.			
The students will have to answer 5 full questions, selecting one full question from each			
module.			
Text Books:			
1. Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event			
System Simulation, 5 th Edition, Pearson Education, 2010.			
Reference Books:			
1. Lawrence M. Leemis, Stephen K. Park: Discrete – Event Simulation: A First			
Course, Pearson Education, 2006.			
2 Averill M Law: Simulation Modeling and Analysis 4 th Edition Tata McGraw-			

Averill M. Law: Simulation Modeling and Analysis, 4 th Edition, Tata McGraw Hill, 2007

INTERNSHIP / PROFESSIONAL PRACTISE [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – VIII					
Subject Code	15CS84	IA Marks	50		
Duration	4 weeks	Exam Marks	50		
		Exam Hours	03		
	CREDITS – 0	2			
Course objectives: This course will	enable students t	0			
Description (If any):					
Course outcomes: The students should be able to:					
Evaluation of Internship :					

PROJECT WORK PHASE II				
[As per Choice Ba	sed Credit System	(CBCS) scheme]		
(Effective from	n the academic yea	ar 2016 -2017)		
S	EMESTER – VIII			
Subject Code	15CSP85	IA Marks	100	
Number of Lecture Hours/Week	06	Exam Marks	100	
Total Number of Lecture Hours		Exam Hours	03	
	CREDITS – 05			
Course objectives: This course will e	nable students to			
Description (If any):				
Course outcomes: The students should be able to:				
Conduction of Practical Examination:				

SEMINAR				
[As per Choice Ba	sed Credit System	n (CBCS) scheme]		
(Effective from	n the academic yea	ar 2016 -2017)		
S	EMESTER – VII	Ι		
Subject Code	15CSS86	IA Marks	100	
Number of Lecture Hours/Week	04	Exam Marks		
Total Number of Lecture Hours		Exam Hours		
	CREDITS – 02			
Course objectives: This course will e	enable students to			
•				
Description:				
•				
Course outcomes: The students should be able to:				
Evaluation of seminar:				